Ram Balak Mahto Guest faculty Zoology department v.s.j college Rajnagar Madhubani Class B.Sc 3rd yr. Paper 5, group-A 7908055676

Protein classification based on structure

☐ The Primary structure of proteins is the exact ordering of amino
11 6 1 4 1 1 1
acids forming their chains.
☐ The exact sequence of the proteins is very important as it
determines the final fold and therefore the function of the protein.
☐ The number of polypeptide chains together form proteins. These
chains have amino acids arranged in a particular sequence which is
characteristic of the specific protein. Any change in the sequence
changes the entire protein.
2 Secondary Stanisting of Ductain
2.Secondary Structure of Protein
The proteins do not exist in just simple chains of polypeptides.
☐ These polypeptide chains usually fold due to the interaction
between the amine and carboxyl group of the peptide link.
☐ The structure refers to the shape in which a long polypeptide chain
can exist.
They are found to exist in two different types of structures ∞ helix
and β – pleated sheet structures.
☐ This structure arises due to the regular folding of the backbone of
the polypeptide chain due to hydrogen bonding between -CO group
and -NH groups of the peptide bond.
However, segments of the protein chain may acquire their own
local fold, which is much simpler and usually takes the shape of a
spiral an extended shape or a loop. These local folds are termed
secondary elements and form the proteins secondary structure.
α – Helix & β – pleated sheet
(a) α – Helix:
α – Helix is one of the most common ways in which a polypeptide
chain forms all possible hydrogen bonds by twisting into a righthanded screw with the -NH group of each amino acid residue
hydrogen-bonded to the -CO of the adjacent turn of the helix. The
polypeptide chains twisted into a right-handed screw.
(b) β – pleated sheet:
In this arrangement, the polypeptide chains are stretched out
beside one another and then bonded by intermolecular H-bonds.
In this structure, all peptide chains are stretched out to nearly
maximum extension and then laid side by side which is held
together by intermolecular hydrogen bonds. The structure
resembles the pleated folds of drapery and therefore is known as β
– pleated sheet

3. Tertiary Structure of Protein

- ☐ This structure arises from further folding of the secondary structure of the protein.
 ☐ H-bonds, electrostatic forces, disulphide linkages, and Vander Waals forces stabilize this structure.
- ☐ The tertiary structure of proteins represents overall folding of the polypeptide chains, further folding of the secondary structure.
- ☐ It gives rise to two major molecular shapes called fibrous and globular
- ☐ The main forces which stabilize the secondary and tertiary structures of proteins are hydrogen bonds, disulphide linkages, vander Waals and electrostatic forces of attraction.

4. Quaternary Structure of Protein

- ☐ The spatial arrangement of various tertiary structures gives rise to the quaternary structure. Some of the proteins are composed of two or more polypeptide chains referred to as sub-units.
- ☐ The spatial arrangement of these subunits with respect to each other is known as quaternary structure.

